Light Quark Yukawa's

Snowmass Energy Frontier Workshop Restart
September 1, 2021

Christophe Grojean
with the (great) help of
Lina Alasfar, Ramona Gröber, Ayan Paul and Zhuoni Qian (and the Higgs@FC ECFA team)

Why looking at light Yukawa's?

The knowledge of the values of the **Higgs couplings** is essential to understand the deep structure of matter/Universe

```
m_{W, m_Z} \leftrightarrow Higgs couplings

lifetime of stars

(why t_{Sun} \sim t_{life evolution}?)
```


Obvious that Higgs mechanism is at the origin of the light masses? Well, it was also obvious in the 50's that weak interactions are parity invariant...

Which Scale?

Flavour agnostic

$$\kappa_q \equiv \frac{y_q}{N^2} |H|^2 \bar{\psi} H \psi \quad \Longrightarrow \quad \kappa_q \equiv \frac{y_q}{y_q^{\rm SM}} = 1 + c_q \frac{v^3}{m_q \Lambda^2} \quad \Longrightarrow \quad \ker_q = \frac{v_q}{m_q \Lambda^2} \quad \Longrightarrow \quad \ker_q = \frac{v_q}{m_q$$

$$\frac{c_{ij}}{\Lambda^2}|H|^2\bar{\psi}H\psi \quad \Longrightarrow \quad \kappa_q \equiv \frac{y_q}{y_q^{\rm SM}} = 1 + c_q \frac{v^3}{m_q\Lambda^2} \quad \Longrightarrow \quad \begin{cases} \kappa_u = 1000 \to \Lambda = 3\,\text{TeV} \\ \kappa_d = 100 \to \Lambda = 5\,\text{TeV} \\ \kappa_s = 10 \to \Lambda = 4\,\text{TeV} \\ \Delta\kappa_c = 1 \to \Lambda = 3.5\,\text{GeV} \end{cases}$$

but need to pay attention to FCNC (generically ∧>1000 TeV)

large deviations in light Yukawa likely excluded by flavour data \rightarrow don't waste time probing with Higgs

Minimal Flavour Violation

$$\frac{c\,Y_{ij}^{SM}}{\Lambda^2}|H|^2\bar{\psi}_iH\psi_j$$

$$\frac{c Y_{ij}^{SM}}{\Lambda^2} |H|^2 \bar{\psi}_i H \psi_j \qquad \qquad \qquad \kappa_q = 1 + c_q \frac{v^2}{\Lambda^2} \qquad \qquad \qquad \qquad \qquad \begin{pmatrix} \kappa_q = 100 \to \Lambda = 20 \,\text{GeV} \\ \kappa_q = 0.1 \to \Lambda = 800 \,\text{GeV} \end{pmatrix}$$

usually fine with respect to flavour data $(\Lambda > O(few) TeV)$

fine with flavour but signal very difficult to see in Higgs physics (except maybe for charm quark)

Challenge

build flavour models that avoid large FCNC and still generate large deviations in light Yukawa's

interesting model building: Spontaneous Flavour Violation or Aligned Flavour Violation

Delaunay, Grojean, Perez '13

Egana-Ugrinovic, Homiller, Meade, '18

Bar-Shalom, Soni, '18

Which Scale?

Flavour agnostic

$$\kappa_q \equiv \frac{y_q}{N^2} |H|^2 \bar{\psi} H \psi \quad \Longrightarrow \quad \kappa_q \equiv \frac{y_q}{y_q^{\rm SM}} = 1 + c_q \frac{v^3}{m_q \Lambda^2} \quad \Longrightarrow \quad \ker_q = \frac{v_q}{m_q \Lambda^2} \quad \Longrightarrow \quad \ker_q = \frac{v_q}{m_q$$

$$\frac{c_{ij}}{\Lambda^2}|H|^2\bar{\psi}H\psi \quad \Longrightarrow \quad \kappa_q \equiv \frac{y_q}{y_q^{\rm SM}} = 1 + c_q \frac{v^3}{m_q\Lambda^2} \quad \Longrightarrow \quad \begin{cases} \kappa_u = 1000 \to \Lambda = 3\,\text{TeV} \\ \kappa_d = 100 \to \Lambda = 5\,\text{TeV} \\ \kappa_s = 10 \to \Lambda = 4\,\text{TeV} \\ \Delta\kappa_c = 1 \to \Lambda = 3.5\,\text{GeV} \end{cases}$$

but need to pay attention to FCNC (generically ∧>1000 TeV)

large deviations in light Yukawa likely excluded by flavour data \rightarrow don't waste time probing with Higgs

Minimal Flavour Violation

$$\frac{c\,Y_{ij}^{SM}}{\Lambda^2}|H|^2\bar{\psi}_iH\psi_j$$

$$\frac{c Y_{ij}^{SM}}{\Lambda^2} |H|^2 \bar{\psi}_i H \psi_j \qquad \qquad \qquad \kappa_q = 1 + c_q \frac{v^2}{\Lambda^2} \qquad \qquad \qquad \qquad \qquad \begin{pmatrix} \kappa_q = 100 \to \Lambda = 20 \,\text{GeV} \\ \kappa_q = 0.1 \to \Lambda = 800 \,\text{GeV} \end{pmatrix}$$

usually fine with respect to flavour data $(\Lambda > O(few) TeV)$

fine with flavour but signal very difficult to see in Higgs physics (except maybe for charm quark)

Challenge

build flavour models that avoid large FCNC and still generate large deviations in light Yukawa's

interesting model building: Spontaneous Flavour Violation or Aligned Flavour Violation

Delaunay, Grojean, Perez '13

Egana-Ugrinovic, Homiller, Meade, '18

Bar-Shalom, Soni, '18

PROBING LIGHT QUARK YUKAWAS

inclusive rates

Delaunay, Golling, Perez, YS, 1310.7029 Perez, YS, Stamou, Tobioka, 1505.06689, 1503.00290 Brivio, Goertz, Isidori, 1507.02916 ATLAS, 1407.0608 ATLAS, 1501.01325 ATL-PHYS-PUB-2015-001

exclusive rates $(h \rightarrow \gamma V)$

Bodwin, Petriello, Stoynev, Velasco, 1306.5770 Kagan, Perez, Petriello, YS, Stoynev, Zupan, 1406.1722 Bodwin, Chung, Ee, Lee, Petriello 1407.6695 Perez, YS, Stamou, Tobioka 1503.00290 Koing, Neubert, 1505.03870 ATLAS, 1501.03276, 1607.03400 CMS, 1507.03031

Higgs kinematics

Bishara, Haisch, Monni, Re 1606.09253 YS, Zhu, Zupan 1606.09621

Higgs production

Zhou, 1505.06369 Yu 1609.06592

Yukawa's from Global Fits

$$\mathcal{O}_6 = -\lambda |H|^6$$

$\mathcal{O}_{\mathcal{H}}=rac{1}{2}(\partial_{\mu} \mathcal{H}^{2})^{2}$	$\mathcal{O}_{GG}=g_{s}^{2} \mathcal{H} ^{2}\mathit{G}_{\mu u }^{A}\mathit{G}^{A,\mu u }$
$\mathcal{O}_{ extsf{WW}} = g^2 extsf{H} ^2 extsf{W}^{ extsf{a}}_{\mu u} extsf{W}^{ extsf{a},\mu u}$	$\mathcal{O}_{y_u} = y_u \mathcal{H} ^2 \bar{q}_L \tilde{\mathcal{H}} u_R + \text{h.c.}$
$\mathcal{O}_{BB} = g^{\prime 2} H ^2 B_{\mu u}^{\ \ \prime} B^{\mu u}$	$\mathcal{O}_{y_d} = y_d H ^2 \overline{q}_L H d_R + \text{h.c.}$
$\mathcal{O}_{ extit{HW}} = extit{ig} (extit{D}^{\mu} extit{H})^{\dagger} \sigma^{ extit{a}} (extit{D}^{ u} extit{H}) extit{W}^{ extit{a}}_{\mu u}$	$\mathcal{O}_{y_e} = y_e \mathcal{H} ^2 \overline{I}_L \mathcal{H} e_R + \text{h.c.}$
$\mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu u}$	$\mathcal{O}_{3W}=rac{1}{3!}g\epsilon_{abc}W_{\mu}^{a u}W_{ u ho}^{b}W^{c ho\mu}$
${\cal O}_{\it W}=rac{\it ig}{2}({\it H}^{\dagger}\sigma^{\it a}\overleftrightarrow{D_{\mu}}{\it H}){\it D}^{ u}{\it W}_{\mu u}^{\it a}$	$\mathcal{O}_{\mathcal{B}} = rac{i g'}{2} (\mathcal{H}^\dagger \overleftrightarrow{\mathcal{D}_\mu} \mathcal{H}) \partial^ u \mathcal{B}_{\mu u}$
${\cal O}_{WB} = g g' H^\dagger \sigma^a H W^a_{\mu u} B^{\mu u}$	$\mathcal{O}_{H\ell} = i H^\dagger \overleftrightarrow{D_\mu} H \overline{\ell}_L \gamma^\mu \ell_L$
${\cal O}_{\it T}=rac{1}{2}({\it H}^{\dagger} \overleftrightarrow{D_{\mu}} {\it H})^2$	$\mathcal{O}_{H\ell}' = i H^\dagger \sigma^a \overleftrightarrow{D_\mu} H ar{\ell}_L \sigma^a \gamma^\mu \ell_L$
$\mathcal{O}_{\ell\ell} = (\bar{\ell}_{L}\gamma^{\mu}\ell_{L})(\bar{\ell}_{L}\gamma_{\mu}\ell_{L})$	${\cal O}_{He}={\it i}{\it H}^{\dagger} \overleftrightarrow{D_{\mu}} {\it H} ar{e}_{\it R} \gamma^{\mu} {\it e}_{\it R}$
$\mathcal{O}_{ extit{Hq}}= extit{i} H^\dagger \overrightarrow{D_\mu} H \overline{ extit{q}}_{ extit{L}} \gamma^\mu q_{ extit{L}}$	$\mathcal{O}_{ extit{Hu}} = i H^\dagger \stackrel{\longleftarrow}{D_\mu} H \overline{u}_R \gamma^\mu u_R$
$\mathcal{O}_{ extit{Hq}}^{\prime}=i extstyle{H}^{\dagger}\sigma^{a}\overrightarrow{D_{\mu}} extstyle{H}\overline{ extst{q}}_{ extstyle{L}}\sigma^{a}\gamma^{\mu} extstyle{q}_{ extstyle{L}}$	$\mathcal{O}_{ extit{Hd}}= extit{i} H^\dagger \overleftrightarrow{D_\mu} H \overline{d}_R \gamma^\mu d_R$

- ► SILH' basis (eliminate \mathcal{O}_{WW} , \mathcal{O}_{WB} , $\mathcal{O}_{H\ell}$ and $\mathcal{O}'_{H\ell}$)
- ► Modified-SILH' basis (eliminate \mathcal{O}_W , \mathcal{O}_B , $\mathcal{O}_{H\ell}$ and $\mathcal{O}'_{H\ell}$)
- ▶ Warsaw basis (eliminate \mathcal{O}_W , \mathcal{O}_B , \mathcal{O}_{HW} and \mathcal{O}_{HB})

Flavour assumptions
 flavour universality: 19
 flavour diagonality: 31-33
 c, b, t, μ, τ Yukawa only U(2) symmetry
 among 2 first quark generations

BRinv and BRuntagged to take into account light quark generations

Yukawa's from Global Fits

kappa-3 scenario	HL-LHC	HL-LHC + LHeC	HL-LHC + HE-LHC (S2)	HL-LHC + HE-LHC (S2')		
$1 \geq \kappa_W > (68\%)$	0.985	0.996	0.988	0.992		
$1 \geq \kappa_Z > (68\%)$	0.987	0.993	0.989	0.993		
$\kappa_{g}~(\%)$	±2.	±1.6	±1.6	$\pm 1.$		
$\kappa_{\gamma}\left(\% ight)$	±1.6	±1.4	±1.2	± 0.82		
$\kappa_{Z\gamma}\left(\% ight)$	$\pm 10.$	±10. *	±5.5	± 3.7		
κ_c (%)	_	±3.7	_	_		
κ_t (%)	±3.2	±3.2 *	± 2.6	± 1.6		
κ_b (%)	±2.5	±1.2	$\pm 2.$	± 1.4		
κ_{μ} (%)	± 4.4	±4.4 *	± 2.2	± 1.5		
$\kappa_{ au}$ (%)	±1.6	±1.4	±1.2	± 0.77		
BR _{inv} (<%, 95% CL)	1.9	1.1	1.8 *	1.5 *		
BR _{unt} (<%, 95% CL)	inferred using constraint $ \kappa_V \leq 1$					
	4.	1.3	3.3	2.4		

Table 13. Upper bounds on the κ_i for u, d, s and c (at hadron colliders) at 95% CL, obtained from the upper bounds on BR_{unt} in the kappa-3 scenario.

	HL-LHC	+LHeC	+HE-LHC	+ILC ₅₀₀	+CLIC ₃₀₀₀	+CEPC	+FCC-ee ₂₄₀	+FCC-ee/eh/hh
κ_u	560.	320.	430.	330.	430.	290.	310.	280.
κ_d	260.	150.	200.	160.	200.	140.	140.	130.
\mathcal{K}_{S}	13.	7.3	9.9	7.5	9.9	6.7	7.	6.4
$\mathcal{K}_{\mathcal{C}}$	1.2		0.87	measured directly				

Higgs Kinematics (valence quarks)

valance quarks carry larger fraction of the proton momentum \rightarrow more forward yh spectrum gluons has stronger radiation than quarks \rightarrow softer pT spectrum in presence of quark fusion

$$\kappa_u \sim 2000$$

$$\kappa_u \sim 8000$$

Higgs Kinematics (valence quarks)

valance quarks carry larger fraction of the proton momentum \rightarrow more forward yh spectrum gluons has stronger radiation than quarks \rightarrow softer pT spectrum in presence of quark fusion

$$\bar{\kappa}_q = \frac{y_q^{\text{exp}}}{y_b^{\text{SM}}}$$

Soreq, Zhu, Zupan,

Higgs Kinematics (heavier quarks)

quark contribution to ggF production is chirality suppressed but charm is special bc of non-Sudakov double logs

Higgs Kinematics (heavier quarks)

quark contribution to ggF production is chirality suppressed but charm is special bc of non-Sudakov double logs

"Higgs without Higgs" philosophy

Henning, Lombardo, Riembau, Riva '18

modified Yukawa spoils cancelation of energy growing terms in amplitudes

→ large effects in the tails

WWW: same-sign di-lepton final state

- Process: $pp \to W^{\pm}W^{\mp} \to \ell^{\pm}\ell^{\pm}\nu\nu jj$ cross-section: $\sigma(Y_d) = 7.5\,\mathrm{fb} + Y_d^2 \times 210\,\mathrm{fb}$
- Improve **HL-LHC** sensitivity by **more stringent** cuts

$$p_T^{\ell_{1,2}}>60\,{
m GeV}$$
 , $E_T^{
m miss}>120\,{
m GeV}$, $p_T^{jj}>120\,{
m GeV}$, $|\Delta\eta(\ell_1,\ell_2)|<2$,
$$\epsilon_S=~0.61~{
m (HL-LHC)}$$

$$\epsilon_B=~0.015~{
m (HL-LHC)}$$

(With **pTII differential distribution** shape)

Falkowski, Ganguly, Gras, No, Tobioka, Vignaroli, You '20

WWW: tri-lepton final state

• Process $pp \to W^{\pm}W^{\pm}W^{\mp} \to \ell^{\pm}\ell^{\mp}\nu\nu\nu$

HL-LHC:

$$p_T^{\ell_1} > 70 \,\mathrm{GeV} \,, \; p_T^{\ell_2} > 50 \,\mathrm{GeV} \,, \; p_T^{\ell_3} > 30 \,\mathrm{GeV} \,, \; E_T^{\mathrm{miss}} > 80 \,\mathrm{GeV} \,, \; |\Delta \Phi(\ell^\pm, \ell^\pm)| > 2 \,$$

FCC-hh:

$$p_T^{\ell_1} > 150 \,\mathrm{GeV}\,, \ p_T^{\ell_2} > 80 \,\mathrm{GeV}\,, \ p_T^{\ell_3} > 50 \,\mathrm{GeV}\,, \ E_T^{\mathrm{miss}} > 120 \,\mathrm{GeV}\,, \ |\Delta\Phi(\ell^\pm,\ell^\pm)| > 1.5$$

$$\epsilon_S = 0.62 \text{ (HL-LHC)} , \quad \epsilon_S = 0.50 \text{ (FCC-hh)},$$

 $\epsilon_B = 0.037 \text{ (HL-LHC)} , \quad \epsilon_B = 0.014 \text{ (FCC-hh)}.$

(Reducible background negligible)

Falkowski, Ganguly, Gras, No, Tobioka, Vignaroli, You '20

ZZZ: four-lepton final state

• Process $pp o ZZZ o 4\ell + 2\nu$ cross-section: $\sigma(Y_d) = 0.013\,\mathrm{fb} + Y_d^2 imes 1.8\,\mathrm{fb}$,

 $P_T^{\ell_1}$ (GeV)

$$p_T^{\ell_{1,2}} > 25 \text{ GeV}, \, p_T^{\ell_{3,4}} > 10 \text{ GeV}, \, |\eta_\ell| < 2.5, \, \Delta R_{\ell\ell} > 0.1, \, |m_Z - m_{\ell\ell}| < 10 \text{ GeV}.$$

HL-LHC:

$$E_T^{\rm miss} > 200~{\rm GeV}$$

FCC-hh:

$$\Delta R_{\ell\ell} > 0.01$$
 $E_T^{\rm miss} > 500~{\rm GeV}$

(Using ETmiss differential distribution shape)

$$\delta y_d \lesssim 1500 \quad (\text{HL-LHC}) \quad , \quad \lesssim 65 \quad (\text{FCC-hh}) \, ,$$

$$\delta y_u \lesssim 2300 \quad (\text{HL-LHC}) \quad , \quad \lesssim 100 \quad (\text{FCC-hh}) \, ,$$

$$\delta y_s \lesssim 300 \quad (\text{HL-LHC}) \quad , \quad \lesssim 12 \quad (\text{FCC-hh}) \, .$$

Falkowski, Ganguly, Gras, No, Tobioka, Vignaroli, You '20

E^{miss} (GeV)

• 2 σ sensitivity estimates $\mathcal{L} \supset -\frac{h}{v} \sum_{q=u,d,s} m_q (1+\delta y_q) \bar{q} q$

		WWW	ZZZ			
	$\ell^{\pm}\ell^{\pm} + 2\nu + 2j$	$\ell^{\pm}\ell^{\pm}\ell^{\mp} + 3\nu$	Comb.	$4\ell + 2\nu$	$4\ell + 2j$	Comb.
δy_d	430 (36)	840 (54)	420 (34)	1500 (65)	1300 (93)	1100 (60)
δy_u	850 (71)	1700 (110)	830 (68)	2300 (100)	1800 (140)	1600 (92)
δy_s	150 (13)	230 (33)	140 (13)	300 (12)	290 (16)	250 (11)

HL-LHC sensitivity
(FCC-hh sensitivity)

• Dimension-6 operator scale $\mathcal{L}_{\text{SMEFT}} \supset \frac{Y_u |H|^2}{v^2} \bar{u}_R Q_{1,L} H + \frac{Y_d |H|^2}{v^2} \bar{d}_R H^{\dagger} Q_{1,L} + \frac{Y_s |H|^2}{v^2} \bar{s}_R H^{\dagger} Q_{2,L} + \text{h.c.}$

$$\delta y_q = -\frac{Y_q}{y_q^{\rm SM}}$$

$$Y_i = C_i v^2 / \Lambda^2$$

Yukawa's from Higgs² production

large Yukawa's for light quarks → new (dominant) contribution to HH production

Alasfar, Corral Lopez, Gröber, '19

see also, Egana-Ugrinovic, Homiller, Meade, '21

$$g_{hhq_i\bar{q}_i} = -\frac{3}{2} \frac{1 - \kappa_q}{v} g_{hq_i\bar{q}_i}^{\text{SM}},$$

HH more sensitive than H because of SM negative interference in HH but h³ coupling is also largely unknown

Yukawa's from Higgs² production

Alasfar, Gröber, Grojean, Paul, Qian, in progress

Yukawa's from Higgs² production

Alasfar, Gröber, Grojean, Paul, Qian, in progress

Summary

Determination of light Yukawa's is challenging.

Surprising that very different processes lead to bounds in the same ballpark at HL-LHC. Still true at Future Colliders, in particular FCC-hh?

Simple flavour structures, like MFV, likely out of reach at HL-LHC.

Other flavour structures, like Spontaneous Flavour Violation or Aligned Flavour Violation from multi-Higgs models or special models with vector-like quarks, can be tested directly in Higgs physics.

Future direction: CPV Yukawa's...